How many points in Scrabble is coset worth? coset how many points in Words With Friends? What does coset mean? Get all these answers on this page.
See how to calculate how many points for coset.
Is coset a Scrabble word?
Yes. The word coset is a Scrabble US word. The word coset is worth 7 points in Scrabble:
C_{3}O_{1}S_{1}E_{1}T_{1}
Is coset a Scrabble UK word?
Yes. The word coset is a Scrabble UK word and has 7 points:
C_{3}O_{1}S_{1}E_{1}T_{1}
Is coset a Words With Friends word?
Yes. The word coset is a Words With Friends word. The word coset is worth 8 points in Words With Friends (WWF):
C_{4}O_{1}S_{1}E_{1}T_{1}
COSET _{7} | COSTE _{7} |
COTES _{7} | ESCOT _{7} |
ESTOC _{7} |
COSE _{6} | COST _{6} |
COTE _{6} | COTS _{6} |
ECOS _{6} | SCOT _{6} |
SECO _{6} | SECT _{6} |
TECS _{6} | TOCS _{6} |
TOES _{4} | TOSE _{4} |
COS _{5} | COT _{5} |
ECO _{5} | EST _{3} |
OES _{3} | OSE _{3} |
SEC _{5} | SET _{3} |
SOC _{5} | SOT _{3} |
TEC _{5} | TES _{3} |
TOC _{5} | TOE _{3} |
ES _{2} | ET _{2} |
OE _{2} | OS _{2} |
SO _{2} | ST _{2} |
TE _{2} | TO _{2} |
coset ocset csoet scoet oscet socet coest ocest ceost ecost oecst eocst cseot sceot cesot ecsot secot escot osect soect oesct eosct seoct esoct coste ocste csote scote oscte socte cotse octse ctose tcose otcse tocse cstoe sctoe ctsoe tcsoe stcoe tscoe ostce sotce otsce tosce stoce tsoce coets ocets ceots ecots oects eocts cotes octes ctoes tcoes otces toces cetos ectos cteos tceos etcos tecos oetcs eotcs otecs toecs etocs teocs cseto sceto cesto ecsto secto escto csteo scteo ctseo tcseo stceo tsceo cetso ectso cteso tceso etcso tecso setco estco steco tseco etsco tesco osetc soetc oestc eostc seotc esotc ostec sotec otsec tosec stoec tsoec oetsc eotsc otesc toesc etosc teosc setoc estoc steoc tseoc etsoc tesoc
Note: these 'words' (valid or invalid) are all the permutations of the word coset. These words are obtained by scrambling the letters in coset.
co- + set; apparently first used 1910 by American mathematician George Abram Miller.
coset (plural cosets)
Mathematically, given a group $G$ with binary operation $\circ$, element $g\in G$ and subgroup $H\subseteq G$, the set $\left\{g\circ h:h\in H\right\}$, which also defines the left coset if $G$ is not assumed to be abelian.
The concept is relevant to the (mathematical) definitions of normal subgroup and quotient group.